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The paper discusses a theoretical model of statistically steady flow in a strongly 
stratified estuary. A halocline is assumed to be present and the lower layer is 
taken to be deep and non-turbulent. The outflowing upper fluid mixes with the 
salty lower fluid and the flux of the brackish water increases with distance from 
the head of the estuary. The mixing is assumed to be similar to that in laboratory 
models of mixing across density interfaces. 

Two equations of mass conservation are used, one for the steady-state mass 
flux across a vertical section from top to bottom of the channel and one for 
the mass flux into a section of the upper fluid. A buoyancy conservation equation 
is used for the buoyancy flux across a vertical section. A final equation is obtained 
by integrating the horizontal equation of motion across a section of the upper 
fluid. The flow in this layer is assumed to  be opposed by a frictional force propor- 
tional to the square of the velocity averaged over the layer. The pressure- 
gradient force arising from the slope of the free surface is solved for in terms of the 
thickness of the upper layer, the buoyancy difference across the interface, the 
slope of the interface and the horizontal density gradient in the upper layer. 
The derivation shows that the horizontal pressure-gradient force vanishes in the 
lower layer. 

The mathematical problem reduces to two ordinary differential equations 
for the flux in the upper layer and its thickness. Attention is confined to the 
solution for subcritical flow, in which the interface falls with distance from the 
head, reaching a maximum depth a t  a certain section of the estuary. Beyond this 
the interface rises. At the mouth, where, by definition, the width of the estuary 
increases rapidly, it is shown that there must be a transition from subcritical to 
supercritical flow. This condition, applied to the solution for uniform width, 
determines a remaining unknown related to the depth of the halocline at the head 
of the estuary and the complete solution is obtained as a function of the fresh- 
water influx per unit width, the r.m.s. turbulent velocity, the estuary length and 
the buoyancy of sea water. 

The solution is complicated but has reasonable behaviour for variations of the 
given parameters of the problem. A basic feature for values of the constants 
appropriate to fjord-type estuaries is the dominance of friction, omitted in an 
earlier, incomplete investigation by Stommel. This is also revealed by the large 
drop in the free surface over the length of the estuary. 
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A comparison with two estuaries, Oslofjord and Knight Inlet, British 
Columbia, indicates that the former is very different from the model of this paper 
but that  the latter may have a similar nature. 

1. Theoretical model 
The circulation of the water and the distribution of density in an estuary 

are controlled by a number of factors, including the intensity, length scale and 
horizontal distribution of the turbulence, the fresh-water inflow, the imposed 
densitjy differences and the geometry (Pritchard 1952; Rattray & Hansen 1962; 
Dyer 1973). I n  this paper we present a discussion of a statistically steady estuary 
in which there is an upper layer well-mixed vertically by turbulence and a deep 
non-turbulent lower layer of uniform density po. Temperature effects are neglec- 
ted, so that all density variations are assumed to be caused by salinity differences. 
We also neglect Coriolis forces. 

dx z=o 

FIGURE 1. Estuary model. 

Features of the idealized model are shown in figure 1. The width of the channel 
is W ( z )  and the sides are vertical and equidistant from the plane y = 0. The 
bottom is the plane z = 0, but the results are unaffected by an irregular bottom. 
The lower fluid has a thickness h,(x),  the upper fluid has a thickness h(z)  and the 
free surface has a height H = h,+ h.  The variation of H along the estuary pro- 
vides an important component of the pressure-gradient force, but increments in 
H are of the order of 10 cm over tens of kilometres and so may be neglected 
elsewhere in the argument. The vertical variation of the buoyancy b = (p - pf)g/pf 
is confined to a thin interfacial zone of thickness 6, but the mean buoyancy 
varies continuously with x in the upper layer. I n  the definition of b ,  p is the 
density and pf is the density of the fresh water. I n  general, a symbol such as b 
denotes an ensemble average or an average over a long time, and 6 denotes an 
average of b over the vertical cross-section of the upper fluid. 

The buoyancy difference between the two layers is Ab and varies along the 
channel. The r.m.s. turbulent velocity in the upper layer is cr and we assume that 
IT is uniform in this layer. The non-dimensional quantity Ri = hAb/v2 has the 
form of a Richardson number. Ifwe take as typical values h = i03 cm, Ab = 25 cm 
s - ~  and IT = 10 cm s-l, we get Ri = 250. It is reasonable then to  assume that the 
estuary is strongly stratified in the sense that Ri 9 1. 

Conservation of mass for a region of the upper layer of length Ax,  width W 
and height h yields 

A(  IYhE) = 11 vn&, (1) 
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where ii is the mean velocity over the cross-section of the upper layer, da is an 
element of area of the interface and the integral is over the interfacial boundary 
of the region. The normal velocity v, into the layer is zero when there is no 
mixing. We assume, however, that turbulence caused by flow of the brackish 
water, tidal currents and wind stresses exists in the upper layer. As indicated by 
many laboratory experiments (Rouse 8: Dodu 1955; Turner 1968; Kato & 
Phillips 1969; Moore 8: Long 1971), the turbulence will tend to move the interface 
downwards a t  a speed u,, called the entrainment velocity, and in the steady- 
state model of the present paper, this must be opposed by an equal upward 
velocity a t  the interface. According to Long (1975a), we may take the entrain- 
ment velocity to be 

U, = Kna3/hAb, (2) 

where 6(x)  is the buoyancy in the upper fluid, 6, is the uniform buoyancy in the 
lower fluid, Ab = z0 - 6(x) and K ,  is a constant. Let us obtain an estimate for K,. 
I n  stable conditions (Long 1975a.), the ratio q1/cr3 r do, where q is the vertical 
flux of buoyancy near the interface and 1 is the integral length scale of the turbu- 
lence. Using 1 z &h, as in turbulent flow in pipes (Schlichting 1955, p. 408), we 
get q z (r3/10h. We may relate the flux to the entrainment velocity by considering 
a portion of the thin interfacial layer of small length, of thickness S and width W 
and integrating the equation for buoyancy conservation over the region. We get 

- wi Ab q, 

where wi is the mean normal velocity and where terms proportional to 6 are 
omitted. We have, of course, retained the increments in buoyancy and buoyancy 
flux across the thin interface, but we have taken the normal velocity to be con- 
tinuous across the interface in accordance with the equation of continuity. 
Since the interfacial slope is very small, wi is very close to the mean vertical velo- 
city and therefore to u,. We obtain q g u,Ab and u, z u3/l0hAb, so that K ,  = 0-1 
in (2). The continuity equation for the upper layer becomes 

d( WhU)/dz = Kna3TV/hAb. (3) 

Let us now integrate the horizontal equation of motion over a region of width 
W ,  height H and length Ax. I n  this operation, we may replace the density by 
pf through the use of the Boussinesq approximation. We get 

where p is the pressure, v is the velocity, T = (rz, ry, ra) is the stress force in the 
x direction and d V is an element of volume. The components of T are nearly equal 
to the Reynolds stresses in the interior of the fluid. Equation (4) may be written 
as 

34-2 
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where we have used the Boussinesq approximation and the hydrostatic relation 

ro is the stress a t  the bottom boundary averaged across the estuary and 7, is the 
sum of the stresses a t  the side walls. We neglect ar,/ax because we have assumed 
that the turbulence is homogeneous in the layer. At this step in the analysis, it is 
possible to include a term arising from wind stresses a t  the free surface. In  the 
present paper, if a wind stress exists (and is partly responsible for the turbulence), 
we assume that it has a zero average over our averaging time period. 

The integral on the left-hand side of ( 5 )  remains finite as H + co, so that the 
left-hand side of this equation becomes negligible for a very deep lower fluid. 
On the right-hand side of ( 5 ) ,  rO/H -+ 0 and the integral of the wall stress remains 
finite, so t'hat the last two terms in (5) are also negligible. We obtain 

gH, = Abdh/dx - hdE/dx. ( 6 )  

It follows, of course, that the pressure-gradient force along the estuary vanishes 
a t  all levels below the interface. This behaviour is commonly assumed for deep 
fjords (Gade 1974, unpublished manuscript). 

Let us now integrate the horizontal equation of motion over a region of the 
upper fluid of length Ax, width W and height h. We get 

where ri is very nearly equal to the average stress a t  the interface. We assume 
ri = KZ2, where K is the drag coefficient. A term involving the horizontal 
rate of change of 7, has been omitted in (7)  because the turbulence is assumed 
to be uniform in the upper layer. If ui is the average horizontal velocity a t  the 
bottom of the upper layer, the integral on the left-hand side of (7)  may be written 
as 

The ratio of u, ui to the term ri in (7)  is of order u,h/K,, or less, where K,,, is the 
eddy viscosity in the upper fluid near the interface. This ratio is small because 
turbulent velocities are very much larger than entrainment velocities. If we again 
use 1 z$h,  the ratio is approximately u2/hAb, which we have assumed to be small. 
Thus the second term in (8) may be neglected. 

Let 11s now write KKV uudzdy = yZZh W .  (9) 

The quantity y depends on the velocity distribution in the layer. If the velocity 
is uniform, y = 1. Other physically reasonable assumptions yield values greater 
than 1 but less than 2 or so. The theory of this paper does not yield a precise 
value for y ,  but we find that y occurs in combinations with other equally un- 
certain constants of the problem, so that it seems pointless to attempt to refine 
this portion of the argument. 
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Equation (7) becomes 

Y d  h2 d6 dh - - (UUWh) = --- hAb- - KU2, 
wax 2 ax ax 

where we have assumed that y is constant. We have two additional equations 
involving the flux of mass and buoyancy across an entire section: 

U6h+Uo60ho = 0,  U,h,W+UhW = Q j W , ,  (111, (12) 

where Go is the mean horizontal velocity over the cross-section in the lower layer, 
qj W, is the fresh-water influx and W, is the width a t  the head of the estuary. 
We have neglected horizontal diffusion of buoyancy in (1  1). 
Let us now non-dimensionalize using the following quantities: 

Q = Zhw/qj W,, Qo = ;ii,ho W/qj W,, E = X U / ~ , ,  7 = hC/q,, (13) 

D = (6,-6)/g0, m = y ~ ~ / 6 ~ q ~ ,  R = W/W,. (14) 

Equations (3) and (lo)-( 12) become 

1 dD K Q2 1 dy 
T D z .  = _- ya _----- I d  Q2 

xZ(2) 2rn dE; yR2y2  m 

We may also write (15)-(17) as 

Q = D-1, Qo = 1-D-1, 

2. The solution for an estuary of uniform width 

head of the estuary, where y = qh, is 
The solution of (20) for R = 1 satisfying the boundary oondition Q P 1 a t  the 

where 
1/2m (73 = 

1 5 2  s =  l +  
Q3' 1 + K/mK, ' 1 + K/mKn 

The quantity f may be found by integrating (19). We get 

where we choose Q, to be the flux a t  an arbitrary section a t  which E; = 0. 



534 R. R. Long 

We may simplify the problem considerably by the new definitions 

1;' = C3<, 7' = CQAq, Q' = QLQ, 6' = (mK,Jy) CQAL (24) 

7' = ( < I & / (  1 + C')&+l), <' = 7'3/&'3, ( 2 5 )  

where we denote by QL the value of Q' a t  the head of the estuary. We then obtain 

(26a, b )  

where Q6 = QiQ,. Notice t,hat 1 < s < 2 ,  tending to s = 1 as r~ decreases to zero 
and to s = 2 when r~ is very large. 

We may solve (25) for Q': 

Q' = (<')&-U/( 1 + <')&+1). (27) 

Differentiating (27), we obtain 

so that Q' has a maximum, which we may call Q;, when 

<' = <; = t ( s -  1). 
Notice also that 

<'fa&' = dc', 

(28) 

so that 5' and Q' increase or decrease together. 

definition is 

This yields 

Using (24) and (29), we get 

It is enlightening to compute the Froude number F a t  A convenient 

F2 = G/hAb .  (31) 

F2 = y?i2/hAb = m/<. (32) 

F,2= 1 ,  (33) 

so that the maximum flux Q, corresponds to a point of critical flow with super- 
critical flow for <' < <: and subcritical flow for <' > ci. Stommel (1951) found a 
similar behaviour. His theory led to  the differential equation (20) with R = 1 
and the frictional term missing (i.e. s = 2). Stommel's theory was incomplete arid 
he could not solve for fluxes and interface depths as functions of distance along 
the estuary. 

Obviously, increasing flux is associated with increasing distance along the 
estuary towards the mouth. When the flux is a maximum, $' = 6; = 0 is also 
ti maximum, as indicated by (30). From (25) we get 

(34) 

Let us now consider the solution from the viewpoint of figure 2, which anticipates 
the argument below that the mouth is a t  the point 6' = 6; = 0. If we increase <' 
from cA (corresponding to subcritical flow), s- 5' > 0 and q'increases. It reaches 
a maximum at  <' = s and then decreases as <' gets larger. Since Q' is decreasing, 

dy'/dC' = +(<')f(s-3) (s - <')I( 1 + <')&+4). 
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FIGURE 2. Schematic representation of the two solutions. 

(30) shows that E’ is decreasing, so that we are moving towards the head of the estu- 
ary. On the other hand, if we decrease 6’ from 6; (corresponding to supercritical 
flow), we find that 7’ decreases monotonically. Again f“ decreases, so that we are 
again moving towards the head of the estuary. Thus two distinct solutions are 
possible, but the second corresponds to high velocities of a metre per second or 
more a t  the head of the estuary and elsewhere and seems unlikely to occur. It 
also involves a decrease in velocity and an increase in elevation of the free surface 
towards the mouth, both of which are contrary to observations (Gade 1970). 
Consequently, we adopt the solution (5‘ > YE) for subcritical flow. 

The remaining problem concerns the location of the mouth of the estuary. 
The numerical values of various quantities may be determined as follows: we 
first specify a value of s between 1 and 2. This determines c:, the maximum 
QE and the corresponding value of 76. We set 5’ = 0 a t  this section of the channel. 
We then increase 5‘ and determine the corresponding values of Q‘ and 7’ from 
(25) and of 6’ from (26a). We may continue the integration until Q‘ equals Qk, but 
in fact, qh in (26 b )  is unknown and therefore Qi is unknown. Further argument or 
information is needed to determine uniquely the solution of the problem and it is 
clear that the effect of the variation of W (which we allowed to vary in the argu- 
ments of $1) must be relevant. Accordingly, let us derive two equations from ( 1 6 )  
and (17) yielding the rate of change of 17 and of F2 = mQ3/q3R2 along the channel. 
We get 
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I J K L  
FIGVRE 3. Interface variations at the end of the estuary. 

Let us now investigate all possibilities, shown in figure 3, for the location of the 
mouth of the estuary, which we may take to be a section beyond which the 
width of the estuary increases rapidly. 

(a )  The estuary ends at or before the section of maximum depth of the ?Lpper layer 
(point I or J ) .  In  this case 1 - F2 > 0 and the quantity in curly brackets in (35) 
is positive to the left of I or J ,  so that 7 is increasing with c. Equation (36) reveals 
that F2 is increasing but is considerably less than one. Just past point I or J ,  
where R is still close to one but d R / d t  is very large, the last term in curly brackets 
in (35) will quickly dominate and 7 will increase even more rapidly. At the same 
time, the last negative term in (36) will dominate and F2 will start decreasing. 
If we now regard as physically necessary that 7 should decrease past the mouth 
as the mass of brackish water spreads in all directions, this case is impossible. 

(b)  The estuary ends after the section of maximum depth of the upper layer but not 
close to the section at which F2 = 1. In this case, 7 is decreasing just to the left of 
point K and F2 is somewhat smaller than one and increasing. Just past K ,  how- 
ever, the last term in curly brackets in (35) quickly dominates and 91 will reach a 
minimum and then increase. Also, the last negative term in (36) begins to domi- 
nate and F2 begins to decrease. Again i t  is not possible for 7 to decrease past the 
mouth and this case is also impossible. 

(c)  The estuary ends just before the section at which F2 = 1. In  this case 7 is 
decreasing to the left of point L and P2 is very close to one. Then, if dy/dE remains 
finite, the quantity in curly brackets in (35) falls to zero a t  a section just past 
point L, F2 passes through the critical value and 1 - F2 becomes negative. After 
this the last term in curly brackets in (35) dominates and 7 continues to decrease. 
Equation (36) shows that F2 also continues to increase. This behaviour is ent,irely 
reasonable and we therefore accept the point L as the end of the estuary. 

3. Discussion 

Q’ = f(t’, s ) .  We obtain then &A = f(ti, s), Q: = f ( 0 ,  s) and 
We see from the theory that 7’ = g ( t ’ , s ) ,  or from (24), Cr&i = g ( t ’ , s ) .  Also 

CqiL = dtL ,s ) /AG,s) ,  Q, =f(o7s) / f (Ei , s ) ,  
where t i i s  the value of 5‘ a t  the head of the estuary, where 1x1 = L. Computations 
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FIGURE 4. Relationship between the mass flux in the upper layer and the 
estuary length. 

mKIaCLdyq, 

0 1 2 3 4 5 6 7 8 9 10 

mKnCL+% 
FIGURE 6. Relationship between the halocline depth a t  the head of 

the estuary and the estuary length. 

for s = 2 and s = 1.00036 are shown in figures 4 and 5.  They reveal that the 
maximum flux and the depth of the interface a t  the head increase monotonically 
with the length of the estuary. Other physical interpretations are obscured by the 
complicated scaling of the non-dimensional variables and we must assign values 
to the various constants to obtain useful interpretations of the theory. 
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We may refer to two extreme cases with respect to fresh-water influx, namely 
the inner Oslofjord (Gade 1970) and Knight Inlet (Pickard 85 Rodgers 1959), for 
for which we use qf = 60 and 2.3 x lo3 respectively.? It is important, of course, 
to estimate m in (14), but this quantity is extremely sensitive to  the value of u. 
I n  either case, however, and in most estuaries, it seems likely that m is consider- 
ably less than 1. The quantity K ,  has been estimated as K,  = 0-1. The constant 
K is uncertain. In flows in channels and pipes, K is very small because the eddy 
velocities are small compared with mean velocities. This is not true in the present 
problem, in which u and U; are of the same order. An uncertain but reasonable 
estimat,e, therefore, is K = 1. The estimates we have made so far mean t,hat s is 
close to  but a little larger than 1. The computations from the theory reveal little 
variation in Qo as s --f 1. At mK,CLu/qfy = 3, for example, Q, increases by 
about 10 % as s decreases from the rather large value of 1.2 t o  s = 1.00036. Ac- 
cording to figure 4, we may write 

Q, g 1 + 0-9mKn CLu/yqf. (37) 

Q, 1 + 0*033L~4/6,q~. (38) 

Our estimates lead to C = 0.37, and with y = 1.3, (37) may be written as 

- 
I n  Oslofjord, with L z 2.5 x lo6, b, E 5 and &, = 3.2 (Gade 1970), we estimate 

0.83. I n  Knight Inlet, Q, is quite uncertain, but the data suggest a value of 4. 
Using L z 1.1 x lo7 and 6, = 25, we obtain u = 5.7. 

Computations for various values of s near I reveal little variation of cqh with 
s for all but very short estuaries. A rough relationship is 

Computations in figures 4 and 5 yield Cqh = 1.7 and 1.9, respectively, for 
Oslofjord and Knight Inlet. We get approximately h, = 3.3m for Oslofjord and 
21 in for Knight Inlet. The first is a considerable underestimate for Oslofjord 
but the second is close to observations in Knight Inlet. The comparisons suggest 
that  the model of this paper may contain the basic physical mechanisms of 
Knight Inlet but probably differs fundamentally from Oslof jord. This is not 
surprising. The former has a geometry similar to the model whereas the latter is 
very different. For example, Olsofjord has a shallow sill depth, which forms a 
considerable barrier for the influx of salt water, whereas the sill depths of 
Knight Inlet are well below the halocline. There is, moreover, an observed basic 
difference in the horizontal density variation. This is similar to that in the model 
in Knight Inlet) but is virtually absent in Oslofjord, so that the basic driving 
mechanism of the present model is absent in the latter. 

Notice that, if we consider hh as a function of qf, (40) shows that the halocline 
depth is a minimum for a certain value of qf and large for both small and large 
values of the fresh-water discharge. This behaviour has been observed in Alberni 

In  this section all dimensional quantities are expressed in c.g.s. units. 
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Inlet by Tully (1949) and in experiments by Welander (1974) and has been dis- 
cussed a t  some length by Long (1975b). 

An interesting feature of the theory is the slope of the free surface. AS we have 
noted, the surface slopes downwards towards the mouth in subcritical flow and 
(6) yields for the total drop AH 

AH = (q f60 /@)  (Ag’)*. (41) 

For Knight Inlet, for example, (A<’)$ 2 2,  and we get AH 55cm. This seems 
rather large but values of 10-15cm have been found in shorter Norwegian 
fjords by Gade (private communication). Notice that the commonly used argu- 
ment that the free surface must slope downwards towards the mouth (Gade 
1974, unpublished manuscript) implicitly assumes subcritical flow. We have not 
discussed the supercritical case, in which the free surface slopes upwards 
towards the sea, but it is possible that some estuaries have this character. 

The calculated drop in surface level for Knight Inlet represents a potential 
energy far in excess of the observed or theoretical kinetic energies and we con- 
clude that friction dominates the flow. This is probably true of most fjord-type 
estuaries. We also deduce the dominant effect of friction from the fact that s tends 
to be very close to 1. As we see in (22)) this corresponds to large values of the 
drag coefficient K .  Indeed, the ratio of inertial forces to pressure or frictional 
forces is proportional to s - 1. 
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